168k views
13 votes
A box manufacturer is to make a closed box of volume 288in3, where the base is a rectangle whose length is three times its width. What is the length of the box that uses the least amount of material

1 Answer

6 votes
V = Length x Width x Height = 288
If we call the width w
then length = 3w
And height = 288/(3w x w)

Assuming none of the material used overlaps the box will need 6 faces ( top, bottom, 2 ends and 2 sides)
Area of material = 2 x LW + 2 x HW + 2 x HL
= 2(3w x w + 288/(3w x w) x w + 288/(3w x w) x 3w)
= 2(3w^2 + 288/3w + 288/w)
= 2(3w^2 + 96/w + 288/w)
= 2(3w^2 + 384/w)
= 6w^2 + 768/w
Taking the derivative in terms of w
A’ = 12w - 768/w^2
A’ is zero when 12w = 768/w^2
w^3 = 768/12 = 64
w = cube root of 64 = 4
This makes the box with the minimum materials 12 x 4 x 6
So the length that uses the minimum material is 12 inches
User Kylex
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories