29.9k views
5 votes
Susan wants to have $200,000 when she retires. She can afford to invest $400 monthly into an ordinary annuity which pays 7.6% compounded monthly. How many years will it take for her to achieve her goal

User CamelTM
by
8.5k points

1 Answer

0 votes

Answer:

It will take Susan approximately 76.02 years to achieve her goal.

Step-by-step explanation:

This can be calculated using the formula for calculating the Future Value (FV) of an Ordinary Annuity is used as follows:

FV = M * (((1 + r)^n - 1) / r) ................................. (1)

Where,

FV = Future value or the amount Susan wants to have when she retires = $200,000

M = Monthly payment = $400

r = Monthly interest rate = 7.6% / 12 = 0.076 / 12 = 0.00633333333333333

n = number of months = ?

Substituting the values into equation (1) and solve for n, we have

200,000 = 400 * (((1 + 0.00633333333333333)^n - 1) / 0.00633333333333333)

200,000 / 400 = (1.00633333333333333^n - 1) / 0.00633333333333333

50,000 = (1.00633333333333333^n - 1) / 0.00633333333333333

50,000 * 0.00633333333333333 = 1.00633333333333333^n - 1

316.666666666666 = 1.00633333333333333^n - 1

316.666666666666 + 1 = 1.00633333333333333^n

317.666666666666 = 1.00633333333333333^n

Loglinearise both sides, we have:

log(317.666666666666) = n * log(1.00633333333333333)

2.50197164591866 = n * 0.00274185830343385

n = 2.50197164591866 / 0.00274185830343385

n = 912.509462208621

Since n is in months, we divide it by 12 to get the number of years as follows:

Number of years = 912.509462208621 / 12

Number of years = 76.02

Therefore, it will take Susan approximately 76.02 years to achieve her goal.

User Jbasko
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.