129k views
5 votes
Please help me to solve this problem ​

Please help me to solve this problem ​-example-1

2 Answers

5 votes


\LARGE{ \underline{ \tt{Required \: answer:}}}

To Solve:


  • \large\rm{ { (3)/(5) }^(x) . { (5)/(3) }^(2x) = (125)/(27) }

Solution:


\large\rm{ \leadsto { (5)/(3) }^( - x). { (5)/(3) }^(2x) = \frac{5 {}^(3) }{3 {}^(3) } }


\large \rm{ \leadsto \frac{5 {}^(2x - x) }{ {3}^(2x - x) } } = \frac{5 {}^(3) }{ {3}^(3) }


\large \rm{ \leadsto \frac{5 {}^(x) }{ {3}^(x) } = \frac{5 {}^(3) }{ {3}^(3) } }


\large\rm{ \leadsto { \bigg( (5)/(3) \bigg) }^(x) = \bigg( (5)/(3) \bigg) ^(3) }

Then,


  • \large{ \boxed{ \rm{x = 3}}}

The required value of x is 3.

⛱️
\large{ \blue{ \bf{FadedElla}}}

User Javirs
by
5.3k points
3 votes

Answer:

x=3

Explanation:

Please help me to solve this problem ​-example-1
User Deepak Rattan
by
5.2k points