Answer:
The values of b are
Explanation:
We need to find the value of b will cause
to have one real solution.
If it has one real solution, the discriminant is zero.
The formula of discriminant is:
![b^2-4ac](https://img.qammunity.org/2021/formulas/mathematics/high-school/py9bu5ke2vu23y3bmv6ki03lnl5vykvy45.png)
In our case:
![b^2-4ac=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/tu2f5602ur9mnq2git992yga1yi6jvt1yi.png)
We have a=27, b=b and c=3
Putting values to find b
![b^2-4ac=0\\b^2-4(27)(3)=0\\b^2-324=0\\b^2=324\\Taking \ square root \ on \ both \ sides\\√(b^2)=√(324)\\b=\pm18](https://img.qammunity.org/2021/formulas/mathematics/college/m1g07rk8yxsdrydhul2ki8jt2e248kpou7.png)
So, the values of b are
![\mathbf{b=\pm18}](https://img.qammunity.org/2021/formulas/mathematics/college/iqqjf0wd1mhy1uk383bhzhxn0y49z9q8pt.png)