54.1k views
3 votes
Solve x^2+ 8x- 6=0 using the Quadratic Formula

User MrBester
by
8.1k points

2 Answers

2 votes

Answer:

x=−4+√22 or x=−4−√22

Explanation:

Substitute all values in the quadratic formula.

Solve.

User Josh David Miller
by
7.8k points
4 votes

Answer:


\boxed {\sf x= {{ - 4\pm √(22) }}}

Explanation:

The quadratic equation is used to find the roots of a quadratic. The formula is:


x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}

when
{ax^2 + bx + c = 0}

We are given the quadratic:
x^2+8x-6=0

If we compare the given quadratic to the standard form of a quadratic, then:


a= 1\\b=8 \\c= -6

Substitute the values into the formula.


x = \frac{{ - 8\pm \sqrt {8^2 - 4(1)(-6)} }}{{2(1)}}

Solve inside the radical first.

Solve the exponent.

  • 8²= 8*8= 64


x = \frac{{ - 8\pm \sqrt {64 - 4(1)(-6)} }}{{2(1)}}

Multiply 4, 1, and -6.

  • 4(1)(-6)= 4(-6)= -24


x = \frac{{ - 8\pm \sqrt {64 - -24}}}{{2(1)}}

Add 64 and 24 (2 negative signs become a positive)

  • 64- -24 64+24=88


x = \frac{{ - 8\pm \sqrt {88}}}{{2(1)}}

Solve the denominator.


x = \frac{{ - 8\pm \sqrt {88}}}{{2}}

The radical can be simplified. 88 is divisible by a perfect square: 4


x= \frac{{ - 8\pm \sqrt {4}√(22) }}{{2}}

Take the square root of 4.


x= \frac{{ - 8\pm 2√(22) }}{{2}}

Divide by 2.


x= {{ - 4\pm √(22) }}

The roots are: x=0.690416 and x=−8.69042

User Ali Vojdanian
by
7.6k points