26.9k views
3 votes
Need the answer struggling

Need the answer struggling-example-1
User Nitro Zark
by
8.4k points

1 Answer

3 votes

Answer:

The function
f(x)=x^3+\mathbf{1}x^2-\mathbf{17}x+\mathbf{15}

Explanation:

We have the polynomial having zeros 1,3,-5

We can write them as:

x=1,x=3,x=-5

or

x-1=0, x-3=0,x+5=0

Multiplying all terms:


(x-1)(x-3)(x+5)\\=(x(x-3)-1(x-3))(x+5)\\=(x^2-3x-1x+3)(x+5)\\=(x^2-4x+3)(x+5)\\=(x^2-4x+3)+5(x^2-4x+3)\\=^3-4x^2+3x+5x^2-20x+15\\=x^3-4x^2+5x^2+3x-20x+15\\=x^3+x^2-17x+15

So, The function
f(x)=x^3+\mathbf{1}x^2-\mathbf{17}x+\mathbf{15}

User Matt Godbolt
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories