26.9k views
3 votes
Need the answer struggling

Need the answer struggling-example-1
User Nitro Zark
by
5.6k points

1 Answer

3 votes

Answer:

The function
f(x)=x^3+\mathbf{1}x^2-\mathbf{17}x+\mathbf{15}

Explanation:

We have the polynomial having zeros 1,3,-5

We can write them as:

x=1,x=3,x=-5

or

x-1=0, x-3=0,x+5=0

Multiplying all terms:


(x-1)(x-3)(x+5)\\=(x(x-3)-1(x-3))(x+5)\\=(x^2-3x-1x+3)(x+5)\\=(x^2-4x+3)(x+5)\\=(x^2-4x+3)+5(x^2-4x+3)\\=^3-4x^2+3x+5x^2-20x+15\\=x^3-4x^2+5x^2+3x-20x+15\\=x^3+x^2-17x+15

So, The function
f(x)=x^3+\mathbf{1}x^2-\mathbf{17}x+\mathbf{15}

User Matt Godbolt
by
6.1k points