Answer:
4. The solution to the system of equations is: (2,-1)
5. The solution to the system of equations is: (3,5)
Explanation:
4. What is the solution to the system of equations?
![2x+3y=1\\-3x+4y=-10](https://img.qammunity.org/2021/formulas/mathematics/college/u2maws5vxtjy1q4bg2tback2z7g7qlce47.png)
Let:
![2x+3y=1--eq(1)\\-3x+4y=-10--eq(2)](https://img.qammunity.org/2021/formulas/mathematics/college/jvfr3p49bo13hyehftdsx5cf3b8jsln4ai.png)
Multiply eq(1) by 3 and eq(2) by 2 and add both equations
![6x+9y=3\\-6x+8y=-20\\---------\\0x+17y=-17\\y=(-17)/(17)\\y=-1](https://img.qammunity.org/2021/formulas/mathematics/college/v44yia0n227640u5ph8vpnulw96bipsoz4.png)
So, value of y=-1
Now finding the value of x bu putting value of y in eq(1)
![2x+3y=1\\2x+3(-1)=1\\2x=1+3\\2x=4\\x=(4)/(2)\\x=2](https://img.qammunity.org/2021/formulas/mathematics/college/dart92dqpflmphvj93ju6oo8c2d4zys4t7.png)
So, value of x=2
The solution to the system of equations is: (2,-1)
5. What is the solution to the system of equations?
![y=2x-1\\6x-y=13](https://img.qammunity.org/2021/formulas/mathematics/college/lhmk4lwpn2q9yzjdepvwedkjgksxsd4wwl.png)
Let:
![-2x+y=-1--eq(1)\\6x-y=13--eq(2)\\------\\4x=12\\x=(12)/(4)\\x=3](https://img.qammunity.org/2021/formulas/mathematics/college/bl0ks5k6msdsf9yoe4q70yrp8bu5nmq4p1.png)
So, value of x=3
Putting value of x in equation 1 to find value of y
![y=2x-1\\y=2(3)-1\\y=6-1\\y=5](https://img.qammunity.org/2021/formulas/mathematics/college/p3q0eu4lxx1y4tnqbg5os68v9iqa8qpabx.png)
So, value of y=5
The solution to the system of equations is: (3,5)