Answer:
The nearest option is -3 (negative 3)
So, Option B is correct.
Explanation:
We need to solve the inequality
![7 \leq -3x-4](https://img.qammunity.org/2021/formulas/mathematics/college/8f11raylwsy1d06yh9yddz2g7kl021eu6o.png)
Solving:
Step 1: Switching sides of inequality and reversing the inequality
![-3x-4\geq 7](https://img.qammunity.org/2021/formulas/mathematics/college/8d8k9axnyypovqek06oi0tsuo4ipskex4d.png)
Step 2: Adding 4 on both sides
![-3x-4+4\geq 7+4\\-3x\geq 11](https://img.qammunity.org/2021/formulas/mathematics/college/vr9a22zbdh7hjs0mwmjvr6bl7cnbn8czsw.png)
Step 3: Dividing both sides by -3 and reversing the inequality
![(-3x)/(-3)\leq (11)/(-3) \\x\leq -3.6\\](https://img.qammunity.org/2021/formulas/mathematics/college/e6162f2fz358ncvnml4u6hcqw85q1w179v.png)
The nearest option is -3 (negative 3)
So, Option B is correct.