Answer:
![L^2((8m)/(3)+m_r)](https://img.qammunity.org/2021/formulas/physics/college/h3zklgwbsicwvi9ja273lx55gxjk1lz2bm.png)
Step-by-step explanation:
m = Mass of each rod
L = Length of rod = Radius of ring
= Mass of ring
Moment of inertia of a spoke
![(mL^2)/(3)](https://img.qammunity.org/2021/formulas/physics/college/k8k9eyd4zdm8ibiv004aol5dd3dy3gea0d.png)
For 8 spokes
![8(mL^2)/(3)](https://img.qammunity.org/2021/formulas/physics/college/wk014gl0rcbn3jiozgxo2zuix560vup66r.png)
Moment of inertia of ring
![m_rL^2](https://img.qammunity.org/2021/formulas/physics/college/85ssargbzrd6zxci99dwxzm0ofe1nto26w.png)
Total moment of inertia
![8(mL^2)/(3)+m_rL^2\\\Rightarrow L^2((8m)/(3)+m_r)](https://img.qammunity.org/2021/formulas/physics/college/af9fjg2hcjrrrs48jgv0aklt9dy4scp214.png)
The moment of inertia of the wheel through an axis through the center and perpendicular to the plane of the ring is
.