Answer:
(a) The final angular speed is 12.05 rad/s
(b) The time taken to turn 5.5 revolutions is 5.74 s
Step-by-step explanation:
Given;
number of revolutions, θ = 5.5 revolutions
acceleration of the wheel, α = 20 rpm/s
number of revolutions in radian is given as;
θ = 5.5 x 2π = 34.562 rad
angular acceleration in rad/s² is given as;
![\alpha = (20 \ rev)/(min) *(1)/(s) *((2\pi \ rad)/(1 \ rev ) *(1 \ min)/(60 \ s)) \\\\\alpha = 2.1 \ rad/s^2](https://img.qammunity.org/2021/formulas/physics/college/5w1jrq06loon1pganktuvtbgzl7puvt4t2.png)
(a)
The final angular speed is given as;
![\omega _f^2 = \omega_i ^2 + 2\alpha \theta\\\\\omega _f^2 = 0 + 2\alpha \theta\\\\\omega _f^2 = 2\alpha \theta\\\\\omega _f = √(2\alpha \theta)\\\\ \omega _f = √(2(2.1) (34.562))\\\\ \omega _f = 12.05 \ rad/s](https://img.qammunity.org/2021/formulas/physics/college/umtgg5xwnv4750s0vof0s87zb6hyv32xuk.png)
(b) the time taken to turn 5.5 revolutions is given as
![\omega _f = \omega _i + \alpha t\\\\12.05 = 0 + 2.1t\\\\t = (12.05)/(2.1) \\\\t = 5.74 \ s](https://img.qammunity.org/2021/formulas/physics/college/nfnvn3ti51ay5qcaactl6rf3euqj9zogmu.png)