79.6k views
2 votes
4 ≤ y + 2 ≤ -3(y-2)+24​

1 Answer

3 votes

Answer:


4\le \:y+2\le \:-3\left(y-2\right)+24\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:2\le \:y\le \:7\:\\ \:\mathrm{Interval\:Notation:}&\:\left[2,\:7\right]\end{bmatrix}

The solution graph is also attached.

Explanation:

Given


4\:\le \:y\:+\:2\:\le -3\left(y-2\right)+24

as


\mathrm{If}\:a\le \:u\le \:b\:\mathrm{then}\:a\le \:u\quad \mathrm{and}\quad \:u\le \:b

so


4\le \:y+2\quad \mathrm{and}\quad \:y+2\le \:-3\left(y-2\right)+24

solving the intervals

as


4\le \:y+2


y+2\ge \:4

subtract 2 from both sides


y+2-2\ge \:4-2


y\ge \:2

also


y+2\le -3\left(y-2\right)+24


y+2\le \:-3y+30

subtract 2 from both sides


y+2-2\le \:-3y+30-2


y\le \:-3y+28

Add 3y to both sides


y+3y\le \:-3y+28+3y


4y\le \:28

Divide both sides by 4


(4y)/(4)\le (28)/(4)


y\le \:7

so combining the intervals


y\ge \:2\quad \mathrm{and}\quad \:y\le \:7

Merge overlapping intervals


2\le \:y\le \:7

Therefore,


4\le \:y+2\le \:-3\left(y-2\right)+24\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:2\le \:y\le \:7\:\\ \:\mathrm{Interval\:Notation:}&\:\left[2,\:7\right]\end{bmatrix}

The solution graph is also attached.

4 ≤ y + 2 ≤ -3(y-2)+24​-example-1
User Josef Korbel
by
7.2k points