79.6k views
2 votes
4 ≤ y + 2 ≤ -3(y-2)+24​

1 Answer

3 votes

Answer:


4\le \:y+2\le \:-3\left(y-2\right)+24\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:2\le \:y\le \:7\:\\ \:\mathrm{Interval\:Notation:}&\:\left[2,\:7\right]\end{bmatrix}

The solution graph is also attached.

Explanation:

Given


4\:\le \:y\:+\:2\:\le -3\left(y-2\right)+24

as


\mathrm{If}\:a\le \:u\le \:b\:\mathrm{then}\:a\le \:u\quad \mathrm{and}\quad \:u\le \:b

so


4\le \:y+2\quad \mathrm{and}\quad \:y+2\le \:-3\left(y-2\right)+24

solving the intervals

as


4\le \:y+2


y+2\ge \:4

subtract 2 from both sides


y+2-2\ge \:4-2


y\ge \:2

also


y+2\le -3\left(y-2\right)+24


y+2\le \:-3y+30

subtract 2 from both sides


y+2-2\le \:-3y+30-2


y\le \:-3y+28

Add 3y to both sides


y+3y\le \:-3y+28+3y


4y\le \:28

Divide both sides by 4


(4y)/(4)\le (28)/(4)


y\le \:7

so combining the intervals


y\ge \:2\quad \mathrm{and}\quad \:y\le \:7

Merge overlapping intervals


2\le \:y\le \:7

Therefore,


4\le \:y+2\le \:-3\left(y-2\right)+24\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:2\le \:y\le \:7\:\\ \:\mathrm{Interval\:Notation:}&\:\left[2,\:7\right]\end{bmatrix}

The solution graph is also attached.

4 ≤ y + 2 ≤ -3(y-2)+24​-example-1
User Josef Korbel
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories