105k views
0 votes
Hi. I need help with these questions.
See image for question.
Answer 23 , 24,25,26

Hi. I need help with these questions. See image for question. Answer 23 , 24,25,26-example-1
User Vboerchers
by
8.0k points

1 Answer

0 votes

Answer:

  • 23) 4x² - 8k²x + k⁴ = 0
  • 24) (i) 2, (ii) 7
  • 25) (i) 11/8, (ii) -81/8
  • 26) (a³ + b³ + c³ + 3abc)/a³

Explanation:

23..............................

Given

  • Equation 2x(x - k) = k² with the roots α and β

To find

  • The equation with roots α² and β²

Solution

  • 2x(x - k) = k²
  • 2x² - 2kx - k² = 0

The sum and the product of the roots

  • α + β = - (-2k)/2 = k
  • αβ = - k²/2

The equation with roots α² and β² is:

  • (x - α²)(x - β²) = 0
  • x² - (α² + β²)x + α²β²= 0
  • x² - ((α + β)² - 2αβ)x + (αβ)² = 0
  • x² - (k² - 2( -k²/2))x + (- k²/2)² = 0
  • x² - (k² + k²)x + k⁴/4 = 0
  • 4x² - 8k²x + k⁴ = 0

24..............................

Given

  • Equation 3x² - 9x + 2 = 0 with the roots α and β

To find

The values of

  • αβ² + α²β
  • α² - αβ + β²

Solution

The sum and the product of the roots

  • α + β = - (-9)/3 = 3
  • αβ = 2/3

(i)

  • αβ² + α²β =
  • αβ(α + β) =
  • 2/3(3) =
  • 2

(ii)

  • α² - αβ + β² =
  • α² + 2αβ + β² - 3αβ =
  • (α + β)² - 3αβ =
  • 3² - 3(2/3) =
  • 9 - 2 =
  • 7

25..............................

Given

  • Equation 2x² + 9x + 12 = 0 with the roots α and β

To find

  • (a) show that the quadratic equation whose roots are (α - 1/α) and (β - 1/β) is 24x² + 90x + 115 = 0

The values of

  • (i) αβ (1/α² + 1/β²)
  • (ii) α³ + β³

Solution

The sum and the product of the roots

  • α + β = - 9/2
  • αβ = 12/2 = 6

a) The quadratic equation whose roots are (α - 1/α) and (β - 1/β) is:

  • (x - (α - 1/α))(x - (β - 1/β)) = 0
  • x² - (α - 1/α + β - 1/β)x + (α - 1/α)(β - 1/β) = 0
  • x² - ((α + β) - (α + β)/αβ)x + αβ + 1/(αβ) - (α/β + β/α) = 0
  • x² - ((α + β) - (α + β)/αβ)x + αβ + 1/(αβ) - ((α+β)² - 2αβ)/(αβ)= 0
  • x² - (-9/2 - (-9/2)/6)x + 6 + 1/6 - ((-9/2)² - 2(6))/6 = 0
  • x² - ( -9/2 + 3/4)x + 37/6 - (81/4 - 12)/6 = 0
  • x² + 15/4x + 37/6 - 33/24 = 0
  • x² + 90/24x + 148/24 - 33/24 = 0
  • 24x² + 90x + 115 = 0
  • Proven

(i)

  • αβ (1/α² + 1/β²) =
  • αβ(α² + β²)/(α²β²) =
  • ((α + β)² -2αβ)/(αβ) =
  • ((-9/2)² - 2(6))/6 =
  • (81/4 - 12)/6 =
  • 81/24 - 2 =
  • 33/24 =
  • 11/8

(ii)

  • α³ + β³ =
  • (α + β)(α² - αβ + β²) =
  • (α + β)(α² + 2αβ + β² - 3αβ) =
  • (α + β)((α + β)² - 3αβ) =
  • (-9/2)((-9/2)² - 3(6)) =
  • -9/2(81/4 - 18) =
  • -9/2(9/4) =
  • -81/8

26..............................

Given

  • Equation ax² + bx + c = 0 with the roots α and β

To find

  • Express (1 - α³)(1 - β³) in terms of a, b and c

Solution

The sum and the product of the roots

  • α + β = - b/a
  • αβ = c/a

The expression is evaluated as follows:

  • (1 - α³)(1 - β³) =
  • 1 - (α³ + β³) + α³β³ =
  • 1 - (α + β)((α + β)² - 3αβ) + (αβ)³ =
  • 1 - (-b/a)((-b/a)² - 3c/a) + (c/a)³ =
  • 1 + (b/a)³ + 3bc/a² + c³/a³ =
  • 1 + (b³ + c³ + 3abc)/a³ =
  • (a³ + b³ + c³ + 3abc)/a³
User Ashish Rathi
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories