131k views
0 votes
HELP IT'S URGENT.
Please show workings.
No 4 (see image)

HELP IT'S URGENT. Please show workings. No 4 (see image)-example-1
User Drclaw
by
8.5k points

2 Answers

1 vote


\huge \underline{\tt Question} :

If α and β are the roots of the equation ax² + bx + c = 0, where a, b and c are constants such that a ≠ 0, find in terms of a, b and c expressions for :


  1. \tt (1)/(\alpha ^2) + (1)/(\beta ^2)
  2. α³ + β³


\\


\huge \underline{\tt Answer} :


  1. \bf (1)/(\alpha ^2) + (1)/(\beta ^2) = (b^2 - 2ac)/(c^2 )

  2. \bf \alpha ^3 + \beta ^3 = ( - b^3 + 3abc)/(a^3)


\\


\huge \underline{\tt Explanation} :

As, α and β are the roots of the equation ax² + bx + c = 0

We know that :


  • \underline{\boxed{\bf{Sum \: of \: roots = (- coefficient \: of \: x)/(coefficient \: of \: x^2)}}}

  • \underline{\boxed{\bf{Product \: of \: roots = (constant \: term)/(coefficient \: of \: x^2)}}}


\tt : \implies \alpha + \beta = (-b)/(a)

and


\tt : \implies \alpha\beta = (c)/(a)


\\

Now, let's solve given values :


\bf \: \: \: \: 1. \: (1)/(\alpha ^2) + (1)/(\beta ^2)


\tt : \implies (\beta ^2 + \alpha ^2)/(\alpha ^2 \beta ^2)


\tt : \implies (\alpha ^2 + \beta ^2)/(\alpha ^2 \beta ^2)


\\

Now, by using identity :


  • \underline{\boxed{\bf{a^2+ b^2 = (a+b)^2 -2ab}}}


\tt : \implies ((\alpha + \beta)^2 - 2 \alpha\beta)/((\alpha\beta)^2)


\\

Now, by substituting values of :


  • \underline{\boxed{\bf{\alpha + \beta = (-b)/(a)}}}

  • \underline{\boxed{\bf{\alpha\beta = (c)/(a)}}}


\tt : \implies (\Bigg((-b)/(a)\Bigg)^2 - 2 * (c)/(a))/(\Bigg((c)/(a)\Bigg)^2)


\tt : \implies ((b^2)/(a^2) - (2c)/(a))/((c^2)/(a^2))


\tt : \implies ((b^2)/(a^2) - (2ac)/(a^(2) ))/((c^2)/(a^2))


\tt : \implies ((b^2 - 2ac)/(a^2 ))/((c^2)/(a^2))


\tt : \implies \frac{b^2 - 2ac}{\cancel{a^2} } * \frac{ \cancel{a^2}}{c^2}


\tt : \implies (b^2 - 2ac)/(c^2 )


\\


\underline{\bf Hence, \: (1)/(\alpha ^2) + (1)/(\beta ^2) = (b^2 - 2ac)/(c^2 )}


\\


\bf \: \: \: \: 2. \: \alpha ^3 + \beta ^3


\\

By using identity :


  • \underline{\boxed{\bf{a^3+ b^3 = (a+b)(a^2 -ab + b^2)}}}


\tt : \implies (\alpha + \beta)(\alpha ^2 - \alpha\beta + \beta ^2)


\tt : \implies (\alpha + \beta)(\alpha ^2 + \beta ^2 - \alpha\beta)


\\

By using identity :


  • \underline{\boxed{\bf{a^2+ b^2 = (a+b)^2 -2ab}}}


\tt : \implies (\alpha + \beta)(\alpha + \beta)^2 -2 \alpha\beta - \alpha\beta)


\tt : \implies (\alpha + \beta)((\alpha + \beta)^2 -3 \alpha\beta)


\\

Now, by substituting values of :


  • \underline{\boxed{\bf{\alpha + \beta = (-b)/(a)}}}

  • \underline{\boxed{\bf{\alpha\beta = (c)/(a)}}}


\tt : \implies \Bigg((-b)/(a)\Bigg)\Bigg( \bigg((-b)/(a) \bigg)^2 -3 * (c)/(a)\Bigg)


\tt : \implies \Bigg((-b)/(a)\Bigg)\Bigg((b^2)/(a^2) - (3c)/(a)\Bigg)


\tt : \implies \Bigg((-b)/(a)\Bigg)\Bigg((b^2)/(a^2) - (3ac)/(a^(2) )\Bigg)


\tt : \implies \Bigg((-b)/(a)\Bigg)\Bigg((b^2 - 3ac)/(a^2) \Bigg)


\tt : \implies (-b)/(a) * (b^2 - 3ac)/(a^2)


\tt : \implies ( - b(b^2 - 3ac))/(a * a^2)


\tt : \implies ( - b^3 + 3abc)/(a^3)


\\


\underline{\bf Hence, \: \alpha ^3 + \beta ^3 = ( - b^3 + 3abc)/(a^3)}

User Max Hampton
by
8.3k points
2 votes

Answer:

  • (i) (b² - 2ac)/c²
  • (ii) (3abc - b³)/a³

Explanation:

α and β are the roots of the equation:

  • ax² + bx + c = 0

Sum of the roots is:

  • α + b = -b/a

Product of the roots is:

  • αβ = c/a

Solving the following expressions:

(i)

  • 1/α² + 1/β² =
  • (α² + β²) / α²β² =
  • ((α + β)² - 2αβ) / (αβ)² =
  • ((-b/a)² - 2c/a) / (c/a)² =
  • (b²/a² - 2c/a) * a²/c² =
  • b²/c² - 2ac/c² =
  • (b² - 2ac)/c²

----------------

(ii)

  • α³ + β³ =
  • (α + β)(α² - αβ + β²) =
  • (α + β)((α + β)² - 3αβ) =
  • (α + β)³ - 3αβ(α + β) =
  • (-b/a)³ - 3(c/a)(-b/a) =
  • -b³/a³ + 3bc/a²=
  • 3abc/a³ - b³/a³=
  • (3abc - b³)/a³

User Evfwcqcg
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories