132k views
4 votes
I am having a hard time with simultaneous equations specifically the elimination method, i want to know when do we subtract and when do we add, so if u know how its done plz help im confused

Example :
3x-2y =7
4x+y = 13

Plz solve it too-

1 Answer

3 votes

Answer:

The solution to these two equations is (3, 1)

Explanation:

So for the elimination method, we are basically multiply each equation by a factor that would allow us to cancel them out..

We could rewrite the equations as the following to make the elimination method easier:

-2y + 3x = 7

y + 4x = 13

We could multiply the second equation by positive 2 in order to cancel out the y from the first equation when we add.

-2y + 3x = 7

2y + 8x = 26 ---> Now we have 11x = 33, when we simplify, we have x = 3.

Now to find our y value in order to find the solution, we would just plug in our x value and solve for y. **We can use either equation to find the answer for this...

-2y + 3x =7.

-2y + 3(3) = 7

-2y + 9 = 7

-2y = -2

y = 1.

We can double check our answer by plugging in both x and y values into the second equation.

4(3) + 1 = 13.

12 + 1 = 13, so we are correct.

The solution to these two equations is (3, 1)

User Adrian Gonzalez
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories