214k views
4 votes
While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The front sprocket of a bicycle has radius 12.0 cm. If the angular speed of the front sprocket is 0.600 rev/s, what is the radius of the rear sprocket for which the tangential speed of a point on the rim of the rear wheel will be 5.00 m/s?

User Mounesh
by
5.0k points

1 Answer

1 vote

Answer:

2.9 cm

Step-by-step explanation:

Assuming that the rear wheel has a radius of 0.330 m

Given that

r(a) = 12 cm -> 0.12 m

w(a) = 0.6 rev/s -> 3.77 rad/s

v = 5 m/s

r(w) = 0.330 m

The speed on any point on the rim at the sprocket in the front is

v(a) = w(a).r(a) = 3.77 * 0.12 = 0.4524 m/s

Also,

v(a) = speed at any point on the chain

v(b) = speed at any point on the rim of the rear sprocket

v(a) = v(b)

where v(b) = w(b).r(b)

Recall that the speed at any point on the rear wheel is v, where

v = w(b).r(w)

5 = w(b) * 0.330

w(b) = 5/0.330

w(b) = 15.15 rad/s

On substituting this in the equation, we have

v(b) = w(b).r(b).

Remember also, that v(a) = v(b), so

0.4524 = 15.15 * r(b)

r(b) = 0.4524 / 15.15

r(b) = 0.029 m -> 2.9 cm

Therefore, the radius of the rear sprocket needed is 2.9 cm

User Grokster
by
4.2k points