49.7k views
2 votes
Air ows steadily in a thermally insulated pipe with a constant diameter of 6.35 cm, and an average friction factor of 0.005. At the pipe entrance, the air has a Mach number of 0.12, stagnation pressure 280 kPa, and stagnation temperature 825 K. Determine:

a. The length of pipe required to reach the sonic state
b. The static pressure and temperature at the exit if the pipe is 25 m long

User Ladar
by
6.9k points

1 Answer

4 votes

Solution:

Given :

D = 6.35 cm


$\bar f = 0.005$


$P_s = 280 \ kPa$


$T_s= 825 K

a). From fanno flow table (γ = 1.4)

At
$M_1 = 0.12$ ,
$\left((4 \bar f L_(max))/(D)\right)_1 = 45.408$

At
$M_2 = 1$ ,
$\left((4 \bar f L_(max))/(D)\right)_2 = 0$


$\left((4 \bar f L_(max))/(D)\right)_1 - \left((4 \bar f L_(max))/(D)\right)_2 = (4 \bar f L)/(D)$


$45.408 - 0 = (4 * 0.005 * L)/(0.0635)$


$45.408 = (4 * 0.005 * L)/(0.0635)$

L = 144.17 m

b). If L = 25 m


$(4 \bar f L)/(D)=(4 * 0.005 * 25)/(0.0635) = 7.874$

From fanno flow , (γ = 1.4)


$At, M_2 = 0.26 , (4 \bar f L)/(D) = 7.874$


$(P_s)/(P_1)=(T_s)/(T_1)^{(\gamma)/(\gamma - 1)} = (1+(\gamma-1)/(2)M_1^2)^{(\gamma)/(\gamma - 1)}$


$(280)/(P_1)=(825)/(T_1)^{(1.4)/(1.4 - 1)} = (1+(1.4-1)/(2)(0.12)^2)^{(1.4)/(1.4 - 1)}$


$(280)/(P_1)=\left((825)/(T_1)\right)^(3.5) =1.0101$


$P_1 = 277.2 \ kPa$


$T_1=822.63 \ K$


$(T_2)/(T_1)=(1+(\gamma -1)/(2)M_1^2)/(1+(\gamma -1)/(2)M_2^2)$


$(T_2)/(822.63)=(1+(1.4 -1)/(2)(0.12)^2)/(1+(1.4 -1)/(2)(0.26)^2)$


$(T_2)/(822.63)=(1.00288)/(1.01352)$


$T_2=814 \ K$


$(P_2)/(P_1)=(M_1)/(M_2)\left((1+(\gamma -1)/(2)M_1^2)/(1+(\gamma -1)/(2)M_2^2)\right)^(1/2)$


$(P_2)/(P_1)=(0.12)/(0.26)\left((1+(1.4 -1)/(2)(0.12)^2)/(1+(1.4 -1)/(2)(0.26)^2)\right)^(1/2)$


$(P_2)/(277.2)=0.459$


$P_2=127.27 \ kPa$

User Tuan Anh Tran
by
6.8k points