186k views
2 votes
The CEO, ellen misk, left her martian office but accidentally left a cylindricall can of coke (3.1 inches in diameter, 5.42 inches in height) on her desk. If the can exerts a pressure of 510 Pascals, what is the specific gravity of the can?

User IUnknown
by
4.6k points

1 Answer

2 votes

Answer:

Specific Gravity = 0.378

Step-by-step explanation:

First, we will find the force exerted by the can on the table. This force will be equal to the weight of the can:

Pressure = Force/Area = Weight/Area

Weight = Pressure*Area

where,

Area = πdiameter²/4 = π[(3.1 in)(0.0254 m/1 in)]²/4 = 4.8 x 10⁻³ m²

Weight = (510 N/m²)(4.8 x 10⁻³ m²)

Weight = 2.48 N

Now, the weight is given as:

Weight = mg

2.48 N = m(9.8 m/s²)

m = (2.48 N)/(9.8 m/s²)

m = 0.25 kg

Now, we calculate volume of can:

Volume = (Area)(Height) = (4.8 x 10⁻³ m²)(5.42 in)(0.0254 m/1 in)

Volume = 6.6 x 10⁻⁴ m³

Hence, the density of can will be:

Density of Can = m/Volume = 0.25 kg/6.6 x 10⁻⁴ m³

Density of Can = 378.32 kg/m³

So, the specific gravity of Can will be:

Specific Gravity = Density of Can/Density of Water

Specific Gravity = (378.32 kg/m³)/(1000 kg/m³)

Specific Gravity = 0.378

User Praveen VR
by
5.9k points