Answer:
After solving
we get
![\mathbf{x=0.645 \ or \ x = -0.490}](https://img.qammunity.org/2021/formulas/mathematics/college/z7ayrmnfj3vmwvnoi5d18d8a8w0sbclou2.png)
Explanation:
We need to solve the equation:
![(45x-7)4x=57](https://img.qammunity.org/2021/formulas/mathematics/college/8u3fr4g1qpcbxv01hom8eov05yigzg9v6f.png)
Solving:
![(45x-7)4x=57](https://img.qammunity.org/2021/formulas/mathematics/college/8u3fr4g1qpcbxv01hom8eov05yigzg9v6f.png)
Multiply 4x with terms inside the bracket
![180x^2-28x=57](https://img.qammunity.org/2021/formulas/mathematics/college/ga3svskynn9lht6nj75vtuyewxsjuouaog.png)
![180x^2-28x-57=0](https://img.qammunity.org/2021/formulas/mathematics/college/rfnd5uboawhfglxtczk430cfp4olblyjff.png)
We need to solve above equation to find value of x
Using quadratic formula for finding value of x:
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g0ca7qogjzpe8ajn601can4liohtrxutl2.png)
We have a=180, b=-28 and c=-57
![x=(-b\pm√(b^2-4ac))/(2a)\\x=(-(-28)\pm√((-28)^2-4(180)(-57)))/(2(180))\\x=(28\pm√(784+41040))/(360)\\x=(28\pm√(41824))/(360)\\x=(28\pm204.51)/(360)\\x=(28+204.51)/(360) \ or \ x=(28-204.51)/(360)\\x=0.645 \ or \ x = -0.490](https://img.qammunity.org/2021/formulas/mathematics/college/kaz43sl40wnsndub1g7e33innn39ot3s8c.png)
Values of x are
![\mathbf{x=0.645 \ or \ x = -0.490}](https://img.qammunity.org/2021/formulas/mathematics/college/z7ayrmnfj3vmwvnoi5d18d8a8w0sbclou2.png)
So, After solving
we get
![\mathbf{x=0.645 \ or \ x = -0.490}](https://img.qammunity.org/2021/formulas/mathematics/college/z7ayrmnfj3vmwvnoi5d18d8a8w0sbclou2.png)