Answer:
![v=√(26)~m/s](https://img.qammunity.org/2021/formulas/physics/college/47his1clczd0gkpo0ns8dpw53mw44og6r3.png)
Step-by-step explanation:
Parametric Equation of the Velocity
Given the position of the particle at any time t as
![r(t) = (x(t),y(t))](https://img.qammunity.org/2021/formulas/physics/college/9ajhhnz5hv1e5cl6kcm7pzhgk8936c6639.png)
The instantaneous velocity is the first derivative of the position:
![v(t)=(v_x(t),v_y(t))=(x'(t),y'(t))](https://img.qammunity.org/2021/formulas/physics/college/4uaxwo4u2cekg3mrxzsy67m8b08isqp7wn.png)
The speed can be calculated as the magnitude of the velocity:
![v=√(v_x^2+v_y^2)](https://img.qammunity.org/2021/formulas/physics/high-school/ylgd8q4zw8en0q53s6q1b3a8zog7k4hry4.png)
We are given the coordinates of the position of a particle as:
![x=5t-3t^2](https://img.qammunity.org/2021/formulas/physics/college/f6mu00i0bmilygfb3mek94dh7qwsii2e1m.png)
![y=5t](https://img.qammunity.org/2021/formulas/physics/college/xh9v5cc5feeefj6brvji0yb1cp7mybrign.png)
The coordinates of the velocity are:
![v_x(t)=(5t-3t^2)'=5-6t](https://img.qammunity.org/2021/formulas/physics/college/7s7bxtwbceih7vryjd5xkfe1r8bq5zbrf5.png)
![v_y(t)=(5t)'=5](https://img.qammunity.org/2021/formulas/physics/college/aht05a9mx94opst0lntj87rt6jx5cz9lpo.png)
Evaluating at t=1 s:
![v_x(1)=5-6(1)=-1](https://img.qammunity.org/2021/formulas/physics/college/nglq7gx162ia4lx2wc4xd6fpfy8d7o5bxv.png)
![v_y(1)=5](https://img.qammunity.org/2021/formulas/physics/college/30xgt12a167esliaqed60b0j9qxkse4hmx.png)
The velocity is:
![v=√((-1)^2+5^2)](https://img.qammunity.org/2021/formulas/physics/college/tevmulpv2ifaab1z0ymgfsos06ejenh1yb.png)
![v=√(1+25)](https://img.qammunity.org/2021/formulas/physics/college/d017vtubmtqq4f3xnccne34y0w4898xdoe.png)
![\mathbf{v=√(26)~m/s}](https://img.qammunity.org/2021/formulas/physics/college/e7l6t4mc8dhrkkdaty5vk0579foh4x6n0n.png)