Answer:
Explanation:
Using clues given in the problem, we can set up a solvable inequality.
A number g squared:
![g^(2)](https://img.qammunity.org/2021/formulas/physics/college/1idtfpjrjs5zrrjctpf17qckqc2p3v2s86.png)
The sum of a number g squared and 4:
![g^(2)+4](https://img.qammunity.org/2021/formulas/mathematics/college/b8yq2piyhvsj24bu89oshmjl776kayrhzx.png)
Is greater than or equal to:
![g^(2)+4\geq](https://img.qammunity.org/2021/formulas/mathematics/college/n0ow2ea346oata3858uu8mb0bx7dd5w765.png)
Greater than or equal to -5:
![g^(2)+4\geq-5](https://img.qammunity.org/2021/formulas/mathematics/college/qmra2cvz6nw9mixyjr9bd0kw14q5t2x46l.png)
Isolate
:
![g^(2)\geq -9](https://img.qammunity.org/2021/formulas/mathematics/college/kot7ua0nh0wdehyhude8c6gcjkiw1emkbz.png)
Solve for
:
This^ looks bad because of the negative, but as I'll show you in the next step it can be split up and you will use the value
, or
.
![g\geq √(9) √(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/9iyfc7sr89gx3gjuvynb5cdofo8yxxevjl.png)
![g\geq +/-3i](https://img.qammunity.org/2021/formulas/mathematics/college/41ul79p8vt3usynh81o5g471164yer56gz.png)
I hope this helps!