200k views
0 votes
Prove the identity.

cotx(1-cos2x)=sin2x

Note that each Statement must be based on a Rule chosen from the Rule menu. To see a detailed description of a Rule, select the More Information Button to the right of the Rule.

User Hiroaki
by
3.8k points

1 Answer

1 vote

Prove that


cot(x)*(1-cos(2x))=sin(2x)

Proof:


  • cot(x)=(cos(x))/(sin(x))


(cos(x))/(sin(x)) *(1-cos(2x))=sin(2x)


  • sin(2x)=2sin(x)cos(x)

  • cos(2x)=cos^2(x)-sin^2(x)


(cos(x))/(sin(x))*(1-(cos^2(x)-sin^2(x)))=2*sin(x)*cos(x)


(cos(x))/(sin(x))*(1-cos^2(x)+sin^2(x))=2*sin(x)*cos(x)

  • Multiply both sides by
    sin(x),
    sin(x) ≠ 0


cos(x)*(1-cos^2(x)+sin^2(x))=2*sin(x)*cos(x)*sin(x)


cos(x)*(1-cos^2(x)+sin^2(x))=2*sin^2(x)*cos(x)


cos(x) - cos^3(x)+cos(x)*sin^2(x)=2*sin^2(x)*cos(x)


cos(x)*(1-cos^2(x)) + cos(x)*sin^2(x)=2*sin^2(x)*cos(x)


  • 1-cos^2(x) = sin^2(x)


cos(x)*sin^2(x) + cos(x)*sin^2(x)=2*sin^2(x)*cos(x)


2*cos(x)*sin^2(x) = 2*sin^2(x)*cos(x)


2*cos(x)*sin^2(x) = 2*cos(x)*sin^2(x)

Q.E.D.

User Kyle Meyer
by
4.4k points