Answer:
![Z(x,y) = (-18,7)](https://img.qammunity.org/2021/formulas/mathematics/college/svfi4sl501dxm3ie812zllcwqx0451up28.png)
Explanation:
Given
![X = (10,9)](https://img.qammunity.org/2021/formulas/mathematics/college/7zefy90r6yd2f25wdynzmc7bk529t77efo.png)
![Y = (-4,8)](https://img.qammunity.org/2021/formulas/mathematics/college/vbqs28hsbg9zsvfl9jnr3vq3685nqabbrz.png)
Required
Determine the coordinates of Z
From the question, we understand that Y is the midpoint
And the midpoint is calculated as:
![(x,y) = ((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9qxupbw924qpq5q5t1ac7q1qzj9rsmizsy.png)
In this case:
![Y(x,y) = (-4,8)](https://img.qammunity.org/2021/formulas/mathematics/college/1dr6b3vunivdg74f676azt10d2r0mujp9o.png)
![X(x_1,y_1) = (10,9)](https://img.qammunity.org/2021/formulas/mathematics/college/95g9ah8gjxuw09rsbmyfaiqzi535fg5ret.png)
![Z = (x_2,y_2)](https://img.qammunity.org/2021/formulas/mathematics/college/usrv47nwbyo1n735ns8y2t0zwfu02t1ub2.png)
So: This gives
![(x,y) = ((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9qxupbw924qpq5q5t1ac7q1qzj9rsmizsy.png)
![(-4,8) = ((10+x_2)/(2),(9+y_2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/led45gqyhe69cboe17nxqht8ah9u294t5c.png)
Multiply through by 2
![(-8,16) = (10 + x_2,9+y_2)](https://img.qammunity.org/2021/formulas/mathematics/college/xtvnpqg7z49lhmkx3nuhdw4bmpda5ywxv2.png)
By comparison:
and
![16 = 9 + y_2](https://img.qammunity.org/2021/formulas/mathematics/college/5ju781kcfchktlrmz1y8tvz3l12r739ngj.png)
Solving for x2
![-8 = 10 + x_2](https://img.qammunity.org/2021/formulas/mathematics/college/hnqtsmeiltjhvz3qizcrxj6mxa0oiiw5mc.png)
![-8 - 10 = x_2](https://img.qammunity.org/2021/formulas/mathematics/college/enr7wt8t6oc50qrqi7aya498nvfvy8qlkg.png)
![-18 = x_2](https://img.qammunity.org/2021/formulas/mathematics/college/vskkrcsyrdmmkhniobtda2qwvpg9tnokf8.png)
![x_2 = -18](https://img.qammunity.org/2021/formulas/mathematics/college/8kg7c72k5ume5qr2vb1rv0fzh9x7p76dcl.png)
Solving for y2
![16 = 9 + y_2](https://img.qammunity.org/2021/formulas/mathematics/college/5ju781kcfchktlrmz1y8tvz3l12r739ngj.png)
![16 - 9 = y_2](https://img.qammunity.org/2021/formulas/mathematics/college/unostgvxdu1r7358mdswl9rgf5e7rg9lk5.png)
![7 = y_2](https://img.qammunity.org/2021/formulas/mathematics/college/rcdfqiu7x59hinrg3kmpkg8jw0xbj6ix0w.png)
![y_2 = 7](https://img.qammunity.org/2021/formulas/mathematics/college/rv50461odvjizjdq24mhziew0aqmxaz0xk.png)
Hence, the coordinates of Z is:
![Z(x,y) = (-18,7)](https://img.qammunity.org/2021/formulas/mathematics/college/svfi4sl501dxm3ie812zllcwqx0451up28.png)