The surface element is
dS = || ∂r/∂u x ∂r/dv || du dv
where
r (u, v) = x (u, v) i + y (u, v) j + z (u, v) k
r (u, v) = (u + v) i + (u - v) j + (1 + 2u + v) k
is the vector parameterization for the surface S.
The normal vector to the surface is
∂r/∂u x ∂r/dv
… = (i + j + 2 k) x (i - j + k)
… = 3 i + j - 2 k
and has norm
|| ∂r/∂u x ∂r/dv || = √(3² + 1² + (-2)²) = √(14)
Now compute the integral:
∫∫ (x + y + z) dS = √(14) ∫₀¹ ∫₀² ((u + v) + (u - v) + (1 + 2u + v)) du dv
… = √(14) ∫₀¹ ∫₀² (3u + v + 1) du dv
… = √(14) ∫₀¹ (3/2 u² + uv + u) |₀² dv
… = √(14) ∫₀¹ (8 + 2v) dv
… = √(14) (8v + 2v²) |₀¹
… = 10 √(14)