Answer:
The diameter of a circle with the equation is 16.
Explanation:
Given the equation
![\left(x\:-\:4\right)^2\:+\:\left(y\:+\:6\right)^2=\:64](https://img.qammunity.org/2021/formulas/mathematics/high-school/xbupvcf4qxdtlcl3j6cptonrao5egawid9.png)
We know that the circle equation with radius 'r', centered at (a, b)
![\left(x-a\right)^2+\left(y-b\right)^2=r^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tlgar6ghq9876a2zzmke0qj7fw21g2jkj6.png)
![\mathrm{Rewrite}\:\left(x-4\right)^2+\left(y+6\right)^2=64\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}](https://img.qammunity.org/2021/formulas/mathematics/high-school/sb02w6s5i2osp05ziemixec2aebign3wwf.png)
![\left(x-4\right)^2+\left(y-\left(-6\right)\right)^2=8^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/tyd4qd7fnisvtoqjnlpudg06tpza6mmzfa.png)
Here,
radius = r = 8
center = (4, -6)
Hence, the radius of the circle is: r = 8
we know that
diameter = 2r
= 2(8)
= 16
Therefore, the diameter of a circle with the equation is 16.