219k views
4 votes
Which equation has x = -i and x = = 21v3 as two of its solutions?

Which equation has x = -i and x = = 21v3 as two of its solutions?-example-1

1 Answer

3 votes

Answer:

The equation in option A is correct.

Explanation:

Given the equation


\:y=x^4+13x^2+12

Let us find the solution by setting y=0


x^4+13x^2+12=0\:\:\:\:\:


\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4


u^2+13u+12=0

if
ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)


u+1=0\quad \mathrm{or}\quad \:u+12=0


u=-1,\:u=-12


\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x


x^2=-1,\:x^2=-12

solving


x^2=-1


\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))


x=√(-1),\:x=-√(-1)


x=i,\:x=-i
\:√(-1)=i

solving


x^2=-12


\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))


x=√(-12),\:x=-√(-12)


x=2√(3)i,\:x=-2√(3)i

Hence, the solutions are:


x=i,\:x=-i,\:x=2√(3)i,\:x=-2√(3)i

Therefore, the equation in option A is correct.

User Gabriella Giordano
by
4.5k points