Given:
The midpoint of segment AB has the coordinates M(-4,2).
The coordinates of endpoint A are (-6, -7).
To find:
The coordinates of B.
Solution:
Let the coordinates of point B are (a,b).
Formula for midpoint:
![Midpoint=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9i62lu6gc1rfz8v6t1e82036ae3i5e95gc.png)
The midpoint of segment AB has the coordinates M(-4,2), so by using the above formula we get
![M=\left((-6+a)/(2),(-7+b)/(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/ezojx2pne634ryehurynxjkifaip5s02cv.png)
![(-4,2)=\left((-6+a)/(2),(-7+b)/(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/pl78ngpfj3nc8v2zjmpf9lt76mshag1djb.png)
On comparing both sides, we get
![(-6+a)/(2)=-4](https://img.qammunity.org/2021/formulas/mathematics/college/loy2svuny17f7i5uuab7vivsgdlq6s49bw.png)
![-6+a=-8](https://img.qammunity.org/2021/formulas/mathematics/college/5vnbtxi8qwe7bdsgxlvhxk4as7yz6dqmdp.png)
![a=-8+6](https://img.qammunity.org/2021/formulas/mathematics/college/csoxxycqhgpncnrh2d27gxsv6hh7gxghvc.png)
![a=-2](https://img.qammunity.org/2021/formulas/mathematics/college/zu0jpmzkjpbhsmbpenusjw0u8ufcimep41.png)
And,
![(-7+b)/(2)=2](https://img.qammunity.org/2021/formulas/mathematics/college/u0m1kehmkcdx7a1ycd5v538uranko7v5e3.png)
![-7+b=4](https://img.qammunity.org/2021/formulas/mathematics/college/1vjtdk4vtns89d7outwzhvy7ls4zhn2sz1.png)
![b=4+7](https://img.qammunity.org/2021/formulas/mathematics/college/dbeowcv7uv4chs4b5tsxp02ont2g7mpfb9.png)
![b=11](https://img.qammunity.org/2021/formulas/mathematics/high-school/jwczf6m9jhx7mw585w4l60z02kf7huibrj.png)
Therefore, the coordinates of point B are (-2,11).