Answer:
y'' = 18x(x³ + 8)⁴(17x³ + 16)
General Formulas and Concepts:
Calculus
Derivative Notation dy/dx
Derivative of a constant is 0.
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule:
![(d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ye3jh50gnemjvcav7xryd425txf4mpvnnl.png)
Product Rule:
![(d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/70z5rmgswi2evylhbuunm21lw739n2etmu.png)
Explanation:
Step 1: Define
y = (x³ + 8)⁶
Step 2: Find 1st Derivative (dy/dx)
- Chain Rule [Basic Power]: y' = 6(x³ + 8)⁶⁻¹ · (3x³⁻¹ + 0)
- Simplify: y' = 6(x³ + 8)⁵ · 3x²
- Multiply: y' = 18x²(x³ + 8)⁵
Step 3: Find 2nd Derivative (d²y/dx²)
- Product Rule [Chain/Basic Power]: y'' = 2 · 18x²⁻¹ · (x³ + 8)⁵ + 18x² · 5(x³ + 8)⁵⁻¹ · (3x³⁻¹ + 0)
- Simplify: y'' = 36x(x³ + 8)⁵ + 90x²(x³ + 8)⁴ · 3x²
- Multiply: y'' = 36x(x³ + 8)⁵ + 270x⁴(x³ + 8)⁴
- Factor: y'' = 6x(x³ + 8)⁴[6(x³ + 8) + 45x³]
- Distribute: y'' = 6x(x³ + 8)⁴[6x³ + 48 + 45x³]
- Combine like terms: y'' = 6x(x³ + 8)⁴[51x³ + 48]
- Factor: y'' = 6x(x³ + 8)⁴ · 3(17x³ + 16)
- Multiply: y'' = 18x(x³ + 8)⁴(17x³ + 16)