25.3k views
5 votes
Give the factors for the numerator [n] and denominator [d] after reducing.

Give the factors for the numerator [n] and denominator [d] after reducing.-example-1

1 Answer

4 votes

Answer:

The factors for the numerator [n] and denominator [d] after reducing will be:


(x^2-25)/(x^2-4x)/ \:(2x^2+2x-40)/(x^3-x)=(\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2)

Explanation:

Given the expression


(x^2-25)/(x^2-4x)/ (2x^2+2x-40)/(x^3-x)


\mathrm{Apply\:the\:fraction\:rule}:\quad (a)/(b)/ (c)/(d)=(a)/(b)* (d)/(c)


=(x^2-25)/(x^2-4x)* (x^3-x)/(2x^2+2x-40)


\mathrm{Multiply\:fractions}:\quad (a)/(b)* (c)/(d)=(a\:* \:c)/(b\:* \:d)


=(\left(x^2-25\right)\left(x^3-x\right))/(\left(x^2-4x\right)\left(2x^2+2x-40\right))


=(\left(x^2-25\right)x\left(x^2-1\right))/(\left(x^2-4x\right)\left(2x^2+2x-40\right))


\mathrm{Cancel\:the\:common\:factor:}\:x


=(\left(x^2-25\right)\left(x^2-1\right))/(2\left(x-4\right)\left(x^2+x-20\right))

∵ As factor
\left(x^2-25\right)\left(x^2-1\right)=\left(x+5\right)\left(x-5\right)\left(x+1\right)\left(x-1\right)

so the expression becomes


=(\left(x+5\right)\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)\left(x^2+x-20\right))

∵ As factor
2\left(x-4\right)\left(x^2+x-20\right)=2\left(x-4\right)^2\left(x+5\right)

so the expression becomes


=(\left(x+5\right)\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2\left(x+5\right))


\mathrm{Cancel\:the\:common\:factor:}\:x+5


=(\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2)

Therefore, the factors for the numerator [n] and denominator [d] after reducing will be:


(x^2-25)/(x^2-4x)/ \:(2x^2+2x-40)/(x^3-x)=(\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2)

User Zmilojko
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories