25.3k views
5 votes
Give the factors for the numerator [n] and denominator [d] after reducing.

Give the factors for the numerator [n] and denominator [d] after reducing.-example-1

1 Answer

4 votes

Answer:

The factors for the numerator [n] and denominator [d] after reducing will be:


(x^2-25)/(x^2-4x)/ \:(2x^2+2x-40)/(x^3-x)=(\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2)

Explanation:

Given the expression


(x^2-25)/(x^2-4x)/ (2x^2+2x-40)/(x^3-x)


\mathrm{Apply\:the\:fraction\:rule}:\quad (a)/(b)/ (c)/(d)=(a)/(b)* (d)/(c)


=(x^2-25)/(x^2-4x)* (x^3-x)/(2x^2+2x-40)


\mathrm{Multiply\:fractions}:\quad (a)/(b)* (c)/(d)=(a\:* \:c)/(b\:* \:d)


=(\left(x^2-25\right)\left(x^3-x\right))/(\left(x^2-4x\right)\left(2x^2+2x-40\right))


=(\left(x^2-25\right)x\left(x^2-1\right))/(\left(x^2-4x\right)\left(2x^2+2x-40\right))


\mathrm{Cancel\:the\:common\:factor:}\:x


=(\left(x^2-25\right)\left(x^2-1\right))/(2\left(x-4\right)\left(x^2+x-20\right))

∵ As factor
\left(x^2-25\right)\left(x^2-1\right)=\left(x+5\right)\left(x-5\right)\left(x+1\right)\left(x-1\right)

so the expression becomes


=(\left(x+5\right)\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)\left(x^2+x-20\right))

∵ As factor
2\left(x-4\right)\left(x^2+x-20\right)=2\left(x-4\right)^2\left(x+5\right)

so the expression becomes


=(\left(x+5\right)\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2\left(x+5\right))


\mathrm{Cancel\:the\:common\:factor:}\:x+5


=(\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2)

Therefore, the factors for the numerator [n] and denominator [d] after reducing will be:


(x^2-25)/(x^2-4x)/ \:(2x^2+2x-40)/(x^3-x)=(\left(x-5\right)\left(x+1\right)\left(x-1\right))/(2\left(x-4\right)^2)

User Zmilojko
by
8.8k points