Answer:
The capacity of the cistern is
![1.2231~m^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/a5eilazvgmlxfkjrs138589h3abmbpgatt.png)
The volume of iron used is
![0.0891~m^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/do663ift5e2yax19uce2ep8i8xytcxrado.png)
Explanation:
Volume
The volume of a rectangular box of dimensions x,y,z is given by:
V = x.y.z
The external dimensions of the rectangular cistern are 1.35 m, 1.08 m, and 0.90 m, thus the external volume is:
![V_e=1.35*1.08*0.90=1.3122~m^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/y95lwhlnc6rgk61pddpy0jr7j66858iase.png)
The cistern is made of iron 2.5 cm= 0.025 thick, thus the internal dimensions are:
1.35 - 0.025 = 1.325 m
1.08 - 0.025 = 1.055 m
0.90 - 0.025 = 0.875 m
The internal volume is:
![V_i=1.325*1.055*0.875](https://img.qammunity.org/2021/formulas/mathematics/high-school/18b48t480rlv6q9e1wk5ey1xqzpoe5ro65.png)
![V_i=1.2231~m^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/947iy1rhz3islkhvjynbb6s4xfbrfg2ol1.png)
The capacity of the cistern is 1.2231~m^3
The volume of iron used is the difference between the external and the internal volumes:
![V_(iron)=1.3122~m^3-1.2231~m^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/sml46b0xt5imnuvt7lciuozl2mvbmyaaik.png)
![V_(iron)=0.0891~m^3=89.1~lt](https://img.qammunity.org/2021/formulas/mathematics/high-school/lv67p5gvikddfglmvibvqwy1l66lnir2ih.png)
The volume of iron used is
![0.0891~m^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/do663ift5e2yax19uce2ep8i8xytcxrado.png)