103k views
1 vote
Which of the following is equivalent to logb sqrt 57/74

Which of the following is equivalent to logb sqrt 57/74-example-1
User Adib
by
4.4k points

1 Answer

7 votes

Answer:


\log _b\left(\sqrt{(57)/(74)}\right) is equivalent to
(1)/(2)\left(\log \:_b\left(57\right)-\log \:_b\left(74\right)\right).

Hence, option 'c' is true.

Explanation:

Given the expression


\log _b\left(\sqrt{(57)/(74)}\right)

Rewrite as


=\log _b\left(\left((57)/(74)\right)^{(1)/(2)}\right)


\mathrm{Apply\:log\:rule\:}\log _a\left(x^b\right)=b\cdot \log _a\left(x\right),\:\quad \mathrm{\:assuming\:}x\:\ge \:0


=(1)/(2)\log _b\left((57)/(74)\right)


\mathrm{Apply\:log\:rule}:\quad \log _c\left((a)/(b)\right)=\log _c\left(a\right)-\log _c\left(b\right)


=(1)/(2)\left(\log _b\left(57\right)-\log _b\left(74\right)\right)
\log _b\left((57)/(74)\right)=\log _b\left(57\right)-\log _b\left(74\right)

Therefore,


\log _b\left(\sqrt{(57)/(74)}\right) is equivalent to
(1)/(2)\left(\log \:_b\left(57\right)-\log \:_b\left(74\right)\right).

Hence, option 'c' is true.

User Gabriel Avellaneda
by
4.5k points