Answer:
Binomial = 0.8724
Normal approximation = 0.873
Explanation:
Given that :
Sample size (n) = 20
p = 0.6
q = 1 - p = 1 - 0.6 = 0.4
.using normal approximation :
Mean = np
Mean (m) = 20 * 0.6 = 12
Standard deviation (s) = √npq
s = √(20 * 0.6 * 0.4) = 2.1908902
Probability of 10 or more lines in use :
p(x ≥ 10)
Applying for correction:
p(x ≥ 10 - 0.5) = p(x ≥ 9.5)
Using the z formula :
Z = (x - m) / s
Z = (9.5 - 12) / 2.1908902
Z = - 1.141
p(Z > - 1.141) = 0.87307 (Z probability calculator)
p(Z > - 1.141) = 0.873
Using the binomial distribution :
P(x = x) = nCx * p^x * (1 - p)^(n-x)
p(x ≥ 10) = p(x = 10) + p(x = 11) +.... + p(x = 20)
Using calculator :
p(x ≥ 10) = 0.87247
= 0.873