124k views
3 votes
√a +2√y
√a-2√y

Do you know how to rationalize the denominator and simply?

User Psion
by
3.8k points

2 Answers

2 votes

Answer:


(a+4√(ay)+y )/(a-4y )

Explanation:

As far as I understand, it looks like this:
(√(a)+2√(y) )/(√(a)-2√(y) )

We know that:


  1. (a - b)*(a + b) = a^(2) -b^(2)
  2. we can always multiply by 1

  3. (√(a)+2√(y) )/(√(a) +2√(y) )=1

  4. (a+b)^2=a^2+2ab+b^2

Therefore,


(√(a)+2√(y) )/(√(a)-2√(y) ) *1 =(√(a)+2√(y) )/(√(a)-2√(y) ) *(√(a) +2√(y) )/(√(a)+2√(y) ) =((√(a)+2√(y))^2 )/((√(a))^2-(2√(y))^2 ) =(a+4√(ay)+y )/(a-4y )

User Shaig Khaligli
by
3.7k points
8 votes

Answer:


(a+4√(ay)+4y )/(a-4y)

given:


(√(a)+2√(y))/(√(a)-2√(y) )

solve for:

Rationalized denominator

Explanation:

1. Rationalize the denominator


(√(a)+2√(y))/(√(a)-2√(y) ) * (2√(y) )/(2√(y) )

2. Simplify


(2√(y)(√(a)+2√(y) ) )/(2√(y)(√(a)-2√(y)) )


(a+4√(ay)+4y )/(a-4y)

User Erben Mo
by
3.6k points