Answer:
8.4 cm
Explanation:
Given that:
A right angled triangle, let
. Right angled at
.
Altitude AC to the hypotenuse BD.
Length of side BC = 5 cm
Length of side CD = 11 cm
We have to find the value of shorter leg of triangle. i.e. side AB = ?
Using the concept of similarity, we can say the following:
![(AB)/(BC) = (BD)/(AB)\\\Rightarrow AB^2=BC.BD\\\Rightarrow AB^2=5* (5+11)\\\Rightarrow AB^2=5* 16\\\Rightarrow AB^2=80\\\Rightarrow AB=√(80)\\\Rightarrow \bold{AB\approx 8.4\ cm}](https://img.qammunity.org/2021/formulas/mathematics/high-school/67nc3jzgjglkkut069uws38lnvkbg61mfi.png)
The length of shorter leg of the triangle = 8.4 cm