Answer:
The new value after an increase
of £258 by 43 will be: 368.94
Explanation:
As we have to increase £258 by 43 using the multiplier method.
Let 'n' represent the new value after the increase of £258 by 43 using the multiplier method.
Using the formula
n = 258 + percentage increase
![=258+\left(43\%\:258\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o16o5mv8ewk6mhfl437pboowt1sztu2ljq.png)
![=258\:+\:43\%\:* 258](https://img.qammunity.org/2021/formulas/mathematics/high-school/y0mvvf02ymlhpype1q6wqj6k63fll3oi3w.png)
Factoring out 258
![=\left(1\:+\:43\%\right)\:* \:258](https://img.qammunity.org/2021/formulas/mathematics/high-school/y8juo1clmbuloxattinihvjtz0ubojkuo8.png)
as 1 = 100 / 100 = 100%
so
![=\left(100\%\:+\:43\%\right)\:* \:258](https://img.qammunity.org/2021/formulas/mathematics/high-school/rebgzlgyg55kmlmp6ys3exv74yo17qg4o4.png)
![=143\%\:* \:258](https://img.qammunity.org/2021/formulas/mathematics/high-school/xh4ymhyqr773bb873l8vap09fzydfsmwcj.png)
![=(143)/(100)* 258](https://img.qammunity.org/2021/formulas/mathematics/high-school/ttg7d4vhhgvr2dgeavae2s9cgw3t4ufh9z.png)
![=\:(143* 258\:\:)/(100)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7dhe06l0n8zt5syxpzrtzypp3ctw6he6vl.png)
![=\:(36,894\:\:)/(100)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qdeoz8bbnrceit0bh36j5dj8r5l9bocjb9.png)
![=368.94](https://img.qammunity.org/2021/formulas/mathematics/high-school/9hkdvjtkfb82gc2qsomvxt2kuqyp0y5qhu.png)
Therefore, the new value after an increase
of £258 by 43 will be: 368.94