22.0k views
19 votes
Solve the absolute value inequality. |2(x-1)+8| less than or equal to 6.

Solve the absolute value inequality. |2(x-1)+8| less than or equal to 6.-example-1

1 Answer

13 votes

Answer:

[-6 , 0]

Explanation:

If the absolute value of an expression is equal to a number, that means that the expression itself could be equal to either the negative equivalent to that number or the positive equivalent.

for example, if my inequality is |x| > -3

x could either be:

-3 or 3

So,

| 2(x - 1) + 8 | ≤ 6

can be separated into two separate inequalities:

2(x - 1) + 8 ≤ 6

or, 2(x - 1) + 8 ≥ - 6

we solve these inequalities separately.

2(x - 1) + 8 ≤ 6

2x - 2 + 8 ≤ 6 [distribute 2]

2x ≤ 0 [add 2 to both sides, subtract 8 from both sides]

x ≤ 0 [finalize isolating x by dividing both sides of the equation by 2]

expressed as [in interval notation]:

(-∞, 0]

now, let's solve for the other inequality.

2(x - 1) + 8 ≥ - 6

2x - 2 + 8 ≥ - 6 [distribute 2]

2x ≥ -12 [add 2 to both sides, subtract 8 from both]

x ≥ -6 [divide both by 2 to isolate x]

expressed as [in interval notation]:

[-6 , ∞)

So, our answer for x is going to be

-6 ≤ x ≤ 0

or, expressed in interval notation:

[-6 , 0]

*[ includes number]

*( is not equal to number)

User Plutoberth
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories