Answer:
The coordinates of point X that divides the line in 1:4 are: (3,8/5)
Explanation:
When a point divides a line with coordinates (x1,y1) and (x2,y2) in ratio m:n,
the coordinates of point are given by:
![(x,y) = ((mx_2+nx_1)/(m+n) , (my_2+ny_1)/(m+n))](https://img.qammunity.org/2021/formulas/mathematics/college/bq058ew5295zwdpgjbdnuk578of7yk1yd1.png)
Given points are:
(x1,y1) = (5,1)
(x2,y2) = (-5,4)
Putting the values in the formula
![X(x,y) = (((1)(-5)+(4)(5))/(1+4) , ((1)(4)+(4)(1))/(1+4))\\= ((-5+20)/(5), (4+4)/(5))\\=((15)/(5), (8)/(5))\\=(3,(8)/(5))](https://img.qammunity.org/2021/formulas/mathematics/college/w5dn87b1f5yw9hj5pq2zr0kqw6da1cq2h8.png)
Hence,
The coordinates of point X that divides the line in 1:4 are: (3,8/5)