Answer:
UCL(p) = 0.157
LCL(p) = 0
Step-by-step explanation:
Number of samples (n) = 10
Size of sample (n) = 100
We compute the defective rate P as below
P = 7 + 9 + 9 + 11 + 7 + 8 + 0 + 11 + 13 + 2 / 10 * 100
P = 77 / 1000
p = 0.077
We derive σP / value of standard deviation of the sampling distribution as shown below
σP = √P * (1-P) / n
σP = √0.077 * (1 - 0.077) / 100
σP = √0.077 * 0.923/100
σP = √0.071071/100
σP = √0.00071071
σP = 0.02665
Now we calculate the Upper Control chart limit:
UCL(p) = P +Z*σP
UCL(p) = 0.077 + 3*0.02665
UCL(p) = 0.077 + 0.07995
UCL(p) = 0.15695
UCL(p) = 0.157
Now we calculate the Lower Control chart limit:
LCL(p) = P - Z*σP
LCL(p) = 0.077 - 3*0.02665
LCL(p) = 0.077 - 0.07995
LCL(p) = -0.00295 (Negative defect cannot go beyond Zero)
LCL(p) = 0