95.9k views
10 votes
If f(x) = 4x^2 - 6 and g(x) = x^2 - 4x - 8, find (f-g)(x)

User Jasonbogd
by
3.5k points

2 Answers

9 votes
f(x^2 - 4x - 8) = 4x^4 - 32x^3 + 256x + 250
User Filipiz
by
3.4k points
9 votes

Given: f(x)=4x^2-6f(x)=4x2−6g(x)=x^2-4x-8g(x)=x2−4x−8

To find : (f-g)(x)

(f-g)(x)=f(x)-g(x)(f−g)(x)=f(x)−g(x)

(4x^2-6)-(x^2-4x-8)

Using Distributive property:-

4x^2-6-x^2+4x+8

4x^2-x^2+4x+8-6

Combine like term

3x^2+4x+2

(f-g)(x)=3x^2+4x+2

Hence, The composite function is (f-g)(x)=3x^2+4x+2

User Xerkus
by
3.4k points