Solution :
Given
Volume,
![$V_1 = 1 \ m^3$](https://img.qammunity.org/2021/formulas/engineering/college/2vqqrspdr2jcl3n3497vwxhsucs9nzo23z.png)
Temperature,
![$T_1=20 \ ^\circ C](https://img.qammunity.org/2021/formulas/engineering/college/7ix88qezbqio1kor7pztem21yt5035y5u2.png)
![$x_1=0.5$](https://img.qammunity.org/2021/formulas/engineering/college/k68344jvs823yypgd5n3bw9opr5fku6bup.png)
From the saturated water table, corresponding to
, we get the saturated liquid, vapor specific and the entropy.
![$v_f=1.0010 \ m^3/kg$](https://img.qammunity.org/2021/formulas/engineering/college/bvk01vjv3gh78r6t66bqdn2jm3rbxmga6v.png)
![$v_g=57.791 \ m^3/kg$](https://img.qammunity.org/2021/formulas/engineering/college/nohi95ex3up05g29cvsnwt6kwx7tdhomr6.png)
![$s_f=0.2966 \ kJ/kg-K$](https://img.qammunity.org/2021/formulas/engineering/college/g430bazqolucuwz64700ioe8varqyz5ehz.png)
![$s_g=8.6672 \ kJ/kg-K$](https://img.qammunity.org/2021/formulas/engineering/college/ntb3s5aozyo9e70o74wvj1atdyosgfj5ta.png)
Now calculating the initial specific volume
![$v_1=v_f+x_1 \cdot(v_g-v_f)$](https://img.qammunity.org/2021/formulas/engineering/college/u712gnu907dto7snn1mzjbno4nzjv7m0jy.png)
![$=1.0018+05 \cdot(57.791-1.0018)$](https://img.qammunity.org/2021/formulas/engineering/college/59ypgnwm2ayeh75etkktov35c01fa035l9.png)
![$= 29.8973 \ m^3/kg$](https://img.qammunity.org/2021/formulas/engineering/college/d8j0fazz5ov2soaw5ha1yokexr0u6rse5o.png)
Calculating the initial specific entropy:
![$s_1=s_f+x+1 \cdot (s_g-s_f)$](https://img.qammunity.org/2021/formulas/engineering/college/hictbmgzqk6u7xtp27tl01sq6nme2sishh.png)
![$=0.2966+0.5 \cdot (8.6673 - 0.2966)$](https://img.qammunity.org/2021/formulas/engineering/college/oqh4oz33ufje3x6v66cg9ku9dwn9kbcp1h.png)
![$= 4.48 \ kJ/kg-K$](https://img.qammunity.org/2021/formulas/engineering/college/iopw2xk7cq4rj77gbb44d9eiuc07l0jctu.png)
So final volume of the vessel is two times bigger as the initial volume
![$V_2=2 .V_1$](https://img.qammunity.org/2021/formulas/engineering/college/un4j4cn9zyvmkh3hmr1brxuh0gho2j0bss.png)
![$= 2 * 29.8973 = 59.8 \ m^3/kg$](https://img.qammunity.org/2021/formulas/engineering/college/s09kbuofgcn5y4co75l8tt7dy4u677ghzk.png)
If we interpolate the values from tables between
and
, we can get final temperature and specific entropy corresponding to value of
:
Final temperature,
![$T_2= 19.6 ^\circ C$](https://img.qammunity.org/2021/formulas/engineering/college/1f86kssuiyymnhbl5j8oyn45rvlqlv8ppq.png)
and
![$s_2 = 8.68 \ kJ/kg-K$](https://img.qammunity.org/2021/formulas/engineering/college/il8v0acmvo2katacxwzsbvjkqsebvcimip.png)
Calculating change in entropy
![$\Delta s = s_2-s_1$](https://img.qammunity.org/2021/formulas/engineering/college/kr47q0p5brywfi6r1zxswll4rdtgnsho9g.png)
![$=8.68-4.48 = 4.2 \ kJ/kg-K$](https://img.qammunity.org/2021/formulas/engineering/college/63jl6raip2hsalg27h3gpd98l15gei69o8.png)