106k views
3 votes
What is the anti derivative of f'(x)=19x+15?​

What is the anti derivative of f'(x)=19x+15?​-example-1

1 Answer

1 vote

Answer:

Part A:
\displaystyle f(x) = (19)/(2)x^2 + 15x + C

Part B:
\displaystyle f(x) = (19)/(2)x^2 + 15x - 5

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

Functions

  • Function Notation

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Differential Equations

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f'(x) = 19x + 15

Step 2: Find Antiderivative

  1. [Derivative] Integrate both sides:
    \displaystyle \int {f'(x)} \, dx = \int {19x + 15} \, dx
  2. [Left Integral] Simplify:
    \displaystyle f(x) = \int {19x + 15} \, dx
  3. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle f(x) = \int {19x} \, dx + \int {15} \, dx
  4. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle f(x) = 19 \int {x} \, dx + 15 \int {} \, dx
  5. [Integrals] Integration Rule [Reverse Power Rule]:
    \displaystyle f(x) = 19 \bigg( (x^2)/(2) \bigg) + 15x + C
  6. Simplify:
    \displaystyle f(x) = (19)/(2)x^2 + 15x + C

Step 3: Find Particular Solution

  1. Substitute in function value [Function f(x)]:
    \displaystyle 87 = (19)/(2)(-4)^2 + 15(-4) + C
  2. Evaluate:
    \displaystyle 87 = 92 + C
  3. Solve:
    \displaystyle C = -5
  4. Substitute in C [General Solution]:
    \displaystyle f(x) = (19)/(2)x^2 + 15x - 5

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differential Equations

User SweSnow
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.