Answer:
Part A:
![\displaystyle f(x) = (19)/(2)x^2 + 15x + C](https://img.qammunity.org/2021/formulas/mathematics/college/6qkgt4u54a155ux9cizsw9ttc3zhlm6o2r.png)
Part B:
![\displaystyle f(x) = (19)/(2)x^2 + 15x - 5](https://img.qammunity.org/2021/formulas/mathematics/college/1g51n2my3rz8wjq3kd8t0mah8aj1q9yon0.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
Functions
Calculus
Differentiation
- Derivatives
- Derivative Notation
Differential Equations
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
Explanation:
Step 1: Define
Identify
![\displaystyle f'(x) = 19x + 15](https://img.qammunity.org/2021/formulas/mathematics/college/busq0cbw64nvusxto90zdfdyr0to8rmtzp.png)
Step 2: Find Antiderivative
- [Derivative] Integrate both sides:
![\displaystyle \int {f'(x)} \, dx = \int {19x + 15} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/vbvfgsfmk79rmol0zforipbvj3dd8nxuki.png)
- [Left Integral] Simplify:
![\displaystyle f(x) = \int {19x + 15} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/jxgo84r7w4utnytly2nmj95ppvi9eihl3k.png)
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle f(x) = \int {19x} \, dx + \int {15} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/7k8yvdgxd6vcdjl3iumbzk9awao3qtwun0.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle f(x) = 19 \int {x} \, dx + 15 \int {} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/mbkntmnubko8rlv0dqe10wet4wqae5x90q.png)
- [Integrals] Integration Rule [Reverse Power Rule]:
![\displaystyle f(x) = 19 \bigg( (x^2)/(2) \bigg) + 15x + C](https://img.qammunity.org/2021/formulas/mathematics/college/bd6zs72t5he4nhzmlvbeo1yjc9llancgic.png)
- Simplify:
![\displaystyle f(x) = (19)/(2)x^2 + 15x + C](https://img.qammunity.org/2021/formulas/mathematics/college/6qkgt4u54a155ux9cizsw9ttc3zhlm6o2r.png)
Step 3: Find Particular Solution
- Substitute in function value [Function f(x)]:
![\displaystyle 87 = (19)/(2)(-4)^2 + 15(-4) + C](https://img.qammunity.org/2021/formulas/mathematics/college/80qn3bj9z2ggig4bd8eluq8vz3ig9lr8xp.png)
- Evaluate:
![\displaystyle 87 = 92 + C](https://img.qammunity.org/2021/formulas/mathematics/college/v2bgr253fk36aoblpcdbj8jxp21r3498q3.png)
- Solve:
![\displaystyle C = -5](https://img.qammunity.org/2021/formulas/mathematics/college/8es6v7hm35du4fxoufhpn1lhoz80h4gc9t.png)
- Substitute in C [General Solution]:
![\displaystyle f(x) = (19)/(2)x^2 + 15x - 5](https://img.qammunity.org/2021/formulas/mathematics/college/1g51n2my3rz8wjq3kd8t0mah8aj1q9yon0.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differential Equations