Answer:
a. E(X) = 0.333 minutes
b.
![\mathbf{\sigma_x =0.333 \ minutes}](https://img.qammunity.org/2021/formulas/mathematics/college/ygeweonul2nku0yxcj8opfs92xdpi22xgl.png)
c. 0.9986
Explanation:
a.
To find the mean time between counts
Let X be the random variable that illustrates the time between the successive log-ons, then X is exponential with the rate
log-ons per minute.
i.e.
![E(X) = (1)/(\lambda)](https://img.qammunity.org/2021/formulas/mathematics/college/5fcvmb2b0bbaacwrxw2xtjtlt11o9xunzt.png)
![E(X) = (1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/a6bwo3hfzbudkir1uectybe4y9ixpbffcr.png)
E(X) = 0.333 minutes
b. Since X is attributed to an exponential distribution, The standard deviation between counts is:
![\sigma_x = (1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/5cuphrxzjzti5d88lbg22k8ffbbwlqibhh.png)
![\mathbf{\sigma_x =0.333 \ minutes}](https://img.qammunity.org/2021/formulas/mathematics/college/ygeweonul2nku0yxcj8opfs92xdpi22xgl.png)
c.
Given that;
The average number of count per minute = 3
The value of X such that P(X < x) = 0.95 can be calculated as;
![\int \limits ^x_0 \lambda e^(-\lambda t)= 0.95](https://img.qammunity.org/2021/formulas/mathematics/college/qrt7v9ugb1uwfearzspnce3wb3djp36aoa.png)
![3\int \limits ^x_0 \lambda e^(3 t)= 0.95](https://img.qammunity.org/2021/formulas/mathematics/college/ssrvf6hllstvns14kdik0atnkascfklr90.png)
![\bigg [ -e^(3t)\bigg ]^x_0 = 0.95](https://img.qammunity.org/2021/formulas/mathematics/college/a58is5r2lahtowv3l1bqy1s7sx5fw58u3u.png)
![e^(3t) = 1-0.95](https://img.qammunity.org/2021/formulas/mathematics/college/xg0hflu8yngiir4epak8jolurnpiru3war.png)
-3x = ㏑ (0.05)
-3x = - 2.9957
x = -2.9957/ -3
x = 0.9986
The value of x = 0.9986