Answer:
The viscosity
![\mathbf{\eta = 7.416 * 10^(-4) \ N.s/m^2}](https://img.qammunity.org/2021/formulas/chemistry/college/jgun1kxojatkj6j9sq0tnhub09ogt5biaf.png)
Step-by-step explanation:
From the given information:
Time t = 1.55 s
The radius of capillary = 5.00 μm /2
The pressure drop ΔP = 2.45 kPa
The length of the capillary = 2.00 mm
∴
The viscosity of the blood flow can be calculated by using the formula:
![\eta = (r^2 \Delta P )/(8Lv)](https://img.qammunity.org/2021/formulas/chemistry/college/8fh6jq68s1fc0pubwv2081cflrbfzstyyk.png)
where;
v = L/t
Then;
![\eta = (r^2 \Delta P )/(8L((L)/(t)))](https://img.qammunity.org/2021/formulas/chemistry/college/sh7xo0g25q6qajb0i8mfr8da5e4v0v1o5i.png)
![\eta = (((5 * 10^(-6) \ m)/(2))^2(2.45 * 10^3 \ Pa) )/(8(2.0 * 10^(-3) \ m ) ((2.0 * 10^(-3) \ m )/(1.55 \ s )))](https://img.qammunity.org/2021/formulas/chemistry/college/74auoik8ibualt75si5qpruk7iej3dyc7r.png)
![\eta = 7.416 * 10^(-4) \ Pa.s](https://img.qammunity.org/2021/formulas/chemistry/college/gdglmgjjuve0l1qt57cd30jmqsb1be42qa.png)
To (N.s/m²)
![\mathbf{\eta = 7.416 * 10^(-4) \ N.s/m^2}](https://img.qammunity.org/2021/formulas/chemistry/college/jgun1kxojatkj6j9sq0tnhub09ogt5biaf.png)