Answer:
CV of Bank A = 6.4
CV of Bank B = 7.1
CV of Bank B is more than CV of Bank A
Explanation:
Bank A
6.6, 6.7, 6.7, 6.8, 7.0, 7.3, 7.5, 7.7, 7.8, 7.8
![Mean = \frac{\text{Sum of all observations}}{\text{No. of observations}}\\Mean = (6.6+6.7+6.7+6.8+7.0+7.3+7.5+7.7+7.8+ 7.8)/(10)\\Mean =7.19](https://img.qammunity.org/2021/formulas/mathematics/college/woxev6rkjjzzqpfqwn2wpkwvrfnihva352.png)
Standard deviation =
![\sqrt{ \frac{\sum(x-\bar{x})^2}{n}}=0.461](https://img.qammunity.org/2021/formulas/mathematics/college/weuylr53o0r5eolub0n6syzp4mou0s319l.png)
![CV = \frac{\sigma}{\bar{x}} * 100\\CV = (0.461)/(7.19) * 100=6.4](https://img.qammunity.org/2021/formulas/mathematics/college/c1n74z0nmn75ig51rnh199solgyijfjbhk.png)
Bank B
4.0, 5.5, 5.8, 6.2, 6.6, 7.6, 7.7, 8.5, 9.4, 9.7
![Mean = \frac{\text{Sum of all observations}}{\text{No. of observations}}\\Mean = (4.0+5.5+5.8+6.2+6.6+ 7.6+ 7.7+8.5+9.4+9.7)/(10)\\Mean =7.1](https://img.qammunity.org/2021/formulas/mathematics/college/pjhlj4op3nvkb7gxsws0g2jigor5bsen36.png)
Standard deviation =
![\sqrt{ \frac{\sum(x-\bar{x})^2}{n}}=1.718](https://img.qammunity.org/2021/formulas/mathematics/college/bmmyuwhxc8hk0mxwuh3glyvn0vqxjxjye0.png)
![CV = \frac{\sigma}{\bar{x}} * 100\\CV = (1.718)/(7.1) * 100=24.2](https://img.qammunity.org/2021/formulas/mathematics/college/uup2qnxdyuvzs1g4vzcxc13dumdredj6ur.png)
CV of Bank A = 6.4
CV of Bank B = 7.1
CV of Bank B is more than CV of Bank A