232k views
4 votes
Explain how to multiply the following whole numbers 21 x 14

User Sashab
by
4.6k points

1 Answer

4 votes

Answer:


\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ * \:&1&\textbf{4}\end{matrix}

________


\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Explanation:

Given


21\:* \:14

Line up the numbers


\begin{matrix}\space\space&2&1\\ * \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number


\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ * \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers: 1×4=4


\frac{\begin{matrix}\space\space&2&\textbf{1}\\ * \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers: 2×4=8


\frac{\begin{matrix}\space\space&\textbf{2}&1\\ * \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number


\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ * \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers: 1×1=1


\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&* \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers: 2×1=2


\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&* \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.


\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&* \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion


\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4


\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9


\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2


\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,


\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ * \:&1&\textbf{4}\end{matrix}

________


\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

User Merott
by
5.1k points