128k views
3 votes
Write the logarithmic function that best represents the data below.

Write the logarithmic function that best represents the data below.-example-1
User Aknay
by
8.1k points

1 Answer

3 votes

Answer:


y = log_(√((-1)) ) (x - 5.5) + 2 - 0.25817i

Explanation:

The general form of a logarithmic function is given as follows;


y = log_b (x - h) + k

From the given data, we have;

When x = 1, y = -30

Therefore;


b^(-30 - k) = 1 - h

When x = 4, y = 0

Therefore;


b^(0 - k) = 4 - h


b^( - k) = 4 - h

When x = 5, y = 6

Therefore;


b^(6 - k) = 5 - h


b^(6 - k) = b^(6) * b^(- k) = 5 - h


\therefore b^(6) =(5 - h)/(b^(- k)) = (5 - h)/(4 - h)

When x = 6, y = 4

Therefore;


b^(4 - k) = 6 - h


b^(4 - k) = b^(4) * b^(- k) = 6 - h


\therefore b^(4) = (6 - h)/(b^(- k)) = (6 - h)/(4 - h)

Which gives;


\therefore (b^(6))/(b^(4)) =b^(2) = ((5 - h)/(4 - h))/((6 - h)/(4 - h)) = (5 - h)/(6 - h)

When x = 7, y = 2

Therefore;


b^(2 - k) = 7 - h


b^(2) * b^(- k) = 7 - h


\therefore b^(2) =(7 - h)/(4 - h)

From which we have;


(5 - h)/(6 - h) = (7 - h)/(4 - h)

20 - 5·h - 4·h + h² = 42 - 7·h - 6·h + h²

20 - 9·h = 42 - 13·h

4·h = 22

h = 22/4 = 5.5


\therefore b^(2) =(7 - h)/(4 - h) =(7 - 5.5)/(4 - 5.5) = (1.5)/(-1.5) = -1

b = √(-1)


b^( - k) = 4 - h

-k = log(-1.5)/log(√-1)

k = 2 - 0.258127·i

The logarithmic function is therefore;


y = log_(√((-1)) ) (x - 5.5) + 2 - 0.25817i

User Registered User
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories