Answer:
The price of put option is $2.51
Step-by-step explanation:
The relation between the European Put option and Call option is called the Put-Call parity. Put-Call parity will be employed to solve the question
According to Put-Call parity, P = c - Sо + Ke^(-n) + D. Where P=Put Option price, C=Value of one European call option share. Sо = Underlying stock price, D=Dividend, r=risk free rate, t = maturity period
Value of one European call option share = $2
Underlying stock price = $29
Dividend = $0.50
Risk free rate = 10%
Maturity period = 6 month & 2 month, 5 month when expecting dividend
P = c - Sо + Ke^(-n) + D
P = $2 - $29 + [$30 * e^[-0.10*(6/12)] + [$0.50*e^(-0.10*(2/12) + $0.50*e^(-0.10*(5/12)]
P = $2 - $29+($30*0.951229) + ($0.50*0.983471 + $0.50*0.959189)
P = -$27 + $28.5369 + $0.4917 + $0.4796
P = $2.5082
P = $2.51
Therefore, the price of put option is $2.51