109k views
4 votes
Find the value of x of this question ​

Find the value of x of this question ​-example-1
User BenjaminRH
by
5.0k points

1 Answer

1 vote

Let's understand the concept:-

  • Here angle B is 90°
  • So
    \triangle ABC and
    \triangle ABD Are right angled triangle
  • So we use Pythagoras thereon for solution

Required Answer:-

  • First in triangle ABC

perpendicular=p=8cm

Hypontenuse =h =10cm

  • We need to find base=b

According to Pythagoras thereon


{\boxed{\sf b^2=h^2-p^2}}

  • Substitutethe values


\longrightarrow
\sf b^2=10^2-p^2


\longrightarrow
\sf b={\sqrt {10^2-8^2}}


\longrightarrow
\sf b={√(100-64)}


\longrightarrow
\bf b={\sqrt {36}}


\longrightarrow
\sf b=6


\therefore
\overline{BC}=6cm

BD=BC+CD


\longrightarrow
BD=9+6


\longrightarrow
BD=15cm

  • Now in
    \triangle ABD

Perpendicular=p=8cm

Base =b=15cm

  • We need to find Hypontenuse =AD(x)

According to Pythagoras thereon


{\boxed {\sf h^2=p^2+b^2}}

  • Substitute the values


\longrightarrow
\sf h^2=8^2+15^2


\longrightarrow
\sf h={\sqrt {8^2+15^2}}


\longrightarrow
\sf h={\sqrt {64+225}}


\longrightarrow
\sf h={\sqrt {289}}


\longrightarrow
\sf h=17cm


\therefore
{\underline{\boxed{\bf x=17cm}}}

Find the value of x of this question ​-example-1
User KarelZe
by
5.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.