117k views
5 votes
Prove that sin²∅+cos²∅=1 ?​

1 Answer

6 votes

Explanation:

Let ABC be a right angled triangle where there's a right angle in B . Let the measure of the angle BAC be ∅. So,


\sin(∅) = (BC)/(AC)


= > {\sin}^(2)∅ = \frac{ {BC}^(2) }{ {AC}^(2) }

Also,


\cos(∅) = (AB)/(AC)


= > { \cos}^(2)∅ = \frac{ {AB}^(2) }{ {AC}^(2) }

Now adding the values of sin^2∅& cos^2∅,


{ \sin}^(2) ∅ + { \cos}^(2) ∅ = \frac{ {BC}^(2) }{ {AC}^(2) } + \frac{ {AB}^(2) }{ {AC}^(2) }


= > { \sin}^(2) ∅ + { \cos}^(2) ∅ = \frac{ {AB}^(2) + {BC}^(2) }{ {AC}^(2) }

But we know that


{AC}^(2) = {AB}^(2) + {BC}^(2) by applying Pythagorean Theorem

So ,


= > { \sin}^(2) ∅ + { \cos}^(2) ∅ = \frac{ {AC}^(2) }{ {AC}^(2) } = 1

User Srichand Yella
by
4.5k points