126k views
3 votes
(x^2/x-3)=(x+2/2x-5)

1 Answer

6 votes

Answer:

Please check the explanation

Explanation:

Given the expression


(x^2)/(x-3)=(x+2)/(2x-5)


\mathrm{Apply\:fraction\:cross\:multiply:\:if\:}(a)/(b)=(c)/(d)\mathrm{\:then\:}a\cdot \:d=b\cdot \:c


x^2\left(2x-5\right)=\left(x-3\right)\left(x+2\right)


2x^3-5x^2=x^2-x-6


2x^3-6x^2+x+6=0


\left(x-2\right)\left(2x^2-2x-3\right)=0

Using the zero factor principle:

if
ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)


x-2=0\quad \mathrm{or}\quad \:2x^2-2x-3=0

so


x-2=0


x=2

and


2x^2-2x-3=0\:\\x=(1+√(7))/(2),\:x=(1-√(7))/(2)

so


x=2,\:x=(1+√(7))/(2),\:x=(1-√(7))/(2)

User Eric Stein
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories