149k views
1 vote
Homework: 5.1 Systems of Linear Equations

core: 0 of 1 pt
1 of 9 (5 complete)
5.1.19
Solve by the elimination
method.
7x - y = 51
x + 3y = 23
The solution set is
(Simplify your answer. Type an ordered

Homework: 5.1 Systems of Linear Equations core: 0 of 1 pt 1 of 9 (5 complete) 5.1.19 Solve-example-1
User Mayda
by
4.4k points

1 Answer

1 vote

Answer:


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=8,\:y=5

Explanation:

Given the system of linear equations


7x-y=51


x+3y=23

solving by the elimination method


\begin{bmatrix}7x-y=51\\ x+3y=23\end{bmatrix}


\mathrm{Multiply\:}x+3y=23\mathrm{\:by\:}7\:\mathrm{:}\:\quad \:7x+21y=161


\begin{bmatrix}7x-y=51\\ 7x+21y=161\end{bmatrix}


7x+21y=161


-


\underline{7x-y=51}


22y=110

so


\begin{bmatrix}7x-y=51\\ 22y=110\end{bmatrix}

now solving for y


22y=110


\mathrm{Divide\:both\:sides\:by\:}22


(22y)/(22)=(110)/(22)


y=5


\mathrm{For\:}7x-y=51\mathrm{\:plug\:in\:}y=5


7x-y=51


7x-5=5


7x=56


\mathrm{Divide\:both\:sides\:by\:}7


(7x)/(7)=(56)/(7)


x=8


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=8,\:y=5

User Brian Huey
by
4.7k points